The Crystal Structure of Barium Thiosulphate Monohydrate

By Mario Nardelli and Giovanna Fava

Structural Chemistry Laboratory, Institute of Chemistry, University of Parma, Italy

(Received 19 June 1961)

Crystals of BaS₂O₃. H₂O are orthorhombic, space group $D_{2h}^{14}(Pbcn)$, with

a = 20.07, b = 7.19, c = 7.37 Å.

The structure has been determined by three-dimensional Fourier methods and refined by Booth's differential synthesis using hkl (k = 0, 1, 2, 3, 4) data (R = 0.13).

The crystal structure is built up from slabs of two kinds, one formed by two layers of Ba^{2+} and $S_2O_3^{2-}$ the other by a layer of H_2O , succeeding one another along [100]. Each Ba^{2+} coordinates five $S_2O_3^{2-}$ and a H_2O molecule.

Hydrogen-bonding interactions are discussed.

Introduction

The structure analysis of BaS_2O_3 . H_2O was undertaken in this laboratory in 1956 (Cavalca, Nardelli & Braibanti) when the only reliable structure determination of compounds containing the $S_2O_3^{--}$ group was that of $Na_2S_2O_3.5H_2O$ (Taylor & Beevers, 1952).

While the coordinates of Ba^{2+} were easily determined from P(U, W) and P(U, V) Patterson syntheses, overlapping and the presence of the heavy atom made difficult the complete determination by two-dimensional analysis. For these reasons this investigation has been taken up again, using three-dimensional methods.

In the meantime two other structures concerning thiosulphates have been published: $Na_2S_2O_3$ (Sándor & Csordás, 1961) and $Mg(OH_2)_6S_2O_3$ (Nardelli, Fava & Giraldi, 1962).

Experimental

Crystals of BaS₂O₃. H₂O, obtained by slow crystallization from aqueous solution, are orthorhombic colourless needles, elongated along the *b* axis with {100} faces predominating. The unit-cell dimensions and space group were determined from rotation and Weissenberg photographs around [010] and [001] (Cu $K\alpha$ radiation).

Crystal data

BaS₂O₃. H₂O, M = 267.5, orthorhombic, $a = 20.07 \pm 0.01$, $b = 7.19 \pm 0.01$, $c = 7.37 \pm 0.01$ Å. U = 1063.5 Å³. Z = 8, $D_x = 3.337$, $D_m = 3.447$ g.cm.⁻³ (Clarke, 1877). $\mu = 695$ cm.⁻¹ (Cu K α). F(000) = 976. Space group $D_{2h}^{14}(Pbcn)$ (uniquely determined from

systematic absences). (uniquely determined from systematic absences).

The intensities were evaluated by photometric measurements on multiple-film equi-inclination Weissenberg photographs (Cu $K\alpha$), using a thin needle (mean cross-section radius: 0.0025 cm.) for hkl (k=0, 1, 2, 3, 4) and a fragment of nearly rectangular cross-section (0.02 cm. \times 0.005 cm.) for hk0 reflections. These last reflections were used only to correlate the previous ones and to calculate the P(U, V) Patterson projection, and were not introduced in the refinement since they were strongly influenced by absorption. The two equatorial Weissenberg photographs only were taken with the integrating camera of Wiebenga & Smits (1950).

78 independent h0l reflections, 88 h1l, 124 h2l, 104 h3l and 81 h4l were observed, representing 81%, 47%, 66%, 63%, 51% respectively of the possible number observable (the layers with k odd are weaker).

The absorption correction for cylindrical samples was applied to the reflections obtained by rotation around [010]. For non-equatorial layers the correction for the shape of the spots was determined following the method of Phillips (1956). The structure amplitudes were derived by the usual formulae for Lorentz and polarization factors. The scaling factor was obtained at first by Wilson's method, then by comparison with the calculated values.

Determination of the structure

The development of the structural analysis can be outlined in the following steps:

(i) P(U, W) and P(U, V) Patterson syntheses were used to obtain a set of rough coordinates for Ba (Fig. 1; the Ba-S and Ba-O interactions reported in that figure have been deduced a posteriori).

(ii) $\varrho(X, Z)$ and $\varrho(X, Y)$ Fourier syntheses, calculated using the signs of Ba contributions to F_c , could not be interpreted owing to overlapping involving the Ba atom. Nor were the difference maps,

Fig. 1. P(U, W) and P(U, V) Patterson projections. Contours at arbitrary intervals.

calculated by subtracting the contributions of the heavy atom, useful.

(iii) To improve the coordinates of Ba, the threedimensional distribution of the electron density in the region occupied by that atom was evaluated using the signs of the contributions of Ba alone to F_c 's.

(iv) At this stage, the coordinates of Ba were sufficiently correct to allow its subtraction from the $\varrho(X, Z)$ map. This was now well resolved enough to show the peaks of two sulphur and three oxygen atoms.

(v) A complete view of the structure was achieved only from the generalized cosine and sine (010) projections C_1, C_2, C_3, C_4 and S_1, S_2, S_3, S_4 (the subscripts $1, \ldots, 4$ refer to the $hll, \ldots, h4l$ reflections used in calculating these projections), calculated at first with the signs of Ba contributions alone to obtain the y coordinates of the other atoms, then with all the contributions.

Fig. 2. Composite electron density map projected on (010). Contour intervals are $2 \cdot 5 \text{ e.} \text{\AA}^{-3}$ for oxygen, $5 \text{ e.} \text{\AA}^{-3}$ for sulphur and 10 e. \AA^{-3} for barium. Lowest contour is at $5 \text{ e.} \text{\AA}^{-3}$ in the case of O and S, at 10 e. \AA^{-3} in the case of Ba.

Table 2. Thermal parameters (Å²)

	B ₁₁	B_{22}	B_{33}	B_{12}	B_{23}	B ₁₃
Ba	0.93	0.31	0.59	-0.05	0.10	0.05
S_I	1.21	1.43	0.39	0.03	-0.04	-0.30
\bar{S}_{II}	1.13	2.46	1.64	0.31	-0.11	-0.04
OI	$2 \cdot 10$	4.92	0.13	-1.53	0.18	-0.15
OII	1.68	2.20	0.89	0.59	-0.18	0.15
O_{III}	0.33	0.71	1.75	-0.09	0.06	-0.15
H_2O	l·40	1.07	1.74	-0.18	-0.58	0.39

Table 1. Final atomic coordinates and their standard deviations

	x a	y/b	z c	<i>x</i>	(Å)	z	$\sigma(x)$	$\sigma(y)$ (Å×10 ⁴)	σ(z)
Ba	0.1642	0.2194	0.0452	3.295	1.577	0.333	13	30	12
ST	0.1582	0.7272	0.0412	3.175	5.229	0.304	42	64	39
SII	0.0836	0.6092	0.1687	1.678	4.380	1.243	67	147	64
OI	0.2017	0.8398	0.1798	4.048	6.038	1.325	343	592	287
0 _{II}	0.1347	0.8691	-0.0973	2.703	6.249	-0.717	185	424	176
011	0.2021	0.5843	-0.0247	4.056	4.201	-0.182	200	387	216
H_2O	0.0256	0.1562	0.0758	0.514	1.123	0.559	214	541	317

٨.

Table 3. Atomic peak heights (e.Å⁻³) and curvatures (e.Å⁻⁵)

		ø	$-A_{hh}$	$-A_{kk}$	$-A_{ll}$	A_{hk}	A_{kl}	A_{hl}
Ba	obs.	164.68	$2053 \cdot 9$	78 3 ·9	2201.7	1.7	9.9	29.8
24	calc.	168.40	2078.3	798.2	$2225 \cdot 1$	$3 \cdot 8$	4.4	19.9
ST	obs.	51.37	656.6	371.7	681.5	-2.9	-8.8	4.4
-	calc.	51.83	650.0	369.7	678.6	-3.2	-7.2	0·ā
ST	obs.	34 ·98	410·3	160.6	413·3	-25.4	1.4	9·]
	calc.	$33 \cdot 28$	$389 \cdot 8$	155.9	$399 \cdot 2$	-26.6	$2 \cdot 5$	10.8
01	obs.	12.50	80.6	40.0	92.5	-10.1	22.9	24.5
-	calc.	10.76	70.9	35.6	71.8	-2.8	$21 \cdot 2$	$6 \cdot$
OTI	obs.	$14 \cdot 12$	149.5	55.8	150.6	12.5	-12.8	$27 \cdot 7$
	calc.	13.41	143.5	$53 \cdot 1$	144.2	$7 \cdot 2$	13-3	$27 \cdot 4$
0111	obs.	13.55	138.5	61.2	123.0	-26.2	29.6	9 •]
	calc.	14.19	145.8	61.3	134.6	-27.8	31.0	8∙(
H_O	obs.	11.22	129.2	43.7	83.7	-34.6	10.8	2.8
4	calc.	11.72	131.9	46.1	88.5	-31.0	10.9	0.4

(vi) Refinement was carried out first by a threedimensional ρ synthesis (Fig. 2), then by a threedimensional $(F_o - F_c)$ synthesis and finally by five cycles of Booth's differential synthesis, two with isotropic and three with anisotropic thermal parameters. The calculations were performed on an IBM 650 computer using the programmes of Brown, Lingafelter, Stewart & Jensen (1959) for structure factors and Fourier syntheses, and those of Shiono (1957, 1959) for differential synthesis and refinement of thermal parameters. In all these calculations the f curves

Fig. 3. Diagrammatic projections of the structure on (010) and (001).

were those of Thomas & Umeda (1957) for Ba^{2+} , of Dawson (1960) for S and of Berghuis *et al.* (1955) for O.

The final coordinates with their standard deviations (Cruickshank, 1949) are reported in Table 1. The standard deviation of the electron density is $\sigma(\varrho) = 1.09 \text{ e.} \text{Å}^{-3}$.

Thermal parameters reported in Table 2 are influenced by the omission of reflections with $k \ge 5$, as shown by the peak heights and their derivatives

÷.

Table 4. Observed and calculated structure factors A minus sign for F_o means 'less than'

hkl	10 F 10 F	hkl 10	P 10 F	h k l	10 P 10 P	h k l	10 F 10	P _c hk	10 P	10 F _c	h k l	10 F	10 F.
200 4 - 6 10 12 14	2543 -2393 3198 -3239 3927 4463 2333 -2029 1953 -1782 3115 3221 475134 2380 2473	8 0 8 6 9 4 10 5 11 17 12 12 13 5 1 1 0	586 616 402209 528 686 741 1739 224 -1252 339 -1033 72- 86	23 1 3 24 1 1 4 2 3 4 5	221319 162- 130 263- 61 781 -673 267- 67 271154 280287	9 1 8 10 11 12 13 1 1 9 2	255- 238- 221- 195- 162- 217 - 763	146 16 2 -13 17 -7 18 51 19 83 20 270 21 843 22	3 361- 504 347- 334- 310- 707 409	522 606 378 341 227 675 357	028 1 2 3 4 5 6	1486 1725 779 302- 712 1616 1360	1412 1508 -665 28 -685 -1555 1335
18 20 22 24 0 0 2 1	1361 1352 528296 1488 -1718 1584 1928 2913 4314 2153 -2597 1783 -2023	5 10 7 15 9 11 13 2 15 4	730 -514 644 810 524 1433 768 -535 574 -493 297143 415 -467	6 7 8 9 10 11 12	289193 29750 30667 314283 501 - 583 335 321 343106	3 4 5 6 7 2 2 0 4	649 930 -11 187 174 148 1243 11 1621 2	717 23 008 0 2 382 1 119 2 140 3 955 4 318 5	347 4 1557 2364 829 419 1009 2408	397 -1369 2648 565 375 913 -2561	7 8 9 10 11 12 0 2 9	1153 383 356 720 1134 716 199-	1264 -428 302 -750 -1333 976 -298
3 4 5 6 7 8	103 -103 939 -754 1931 -1930 1298 1164 3832 4330 2079 -1906 972 -866 475 376	19 21 23 25 1 1 1 2 25	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	13 14 15 16 17 18 19	340 - 364 612 - 686 352334 348 - 3 339 - 79 327 - 66 3061	6 8 10 12 14 16 18	2228 -4 1418 1 2354 2 2894 -2 1315 2 2228 1 2193 -2	250 6 051 7 440 8 855 9 703 10 985 11 164 12	1468 2214 540 693 1053 2269 1216	-1296 2200 393 518 928 -2366 -1245	1 2 3 4 5 1 3 0 3	522 324 347 175- 292 958 1152	590 282 382 222 -454 -1214 1708
10 11 12 13 14 15 16	2353 -2254 1953 1742 2133 2196 1900 -1783 770 -636 1056 -1025 1731 -1691	5 6 1 5 8 6 1 7 15 8 24 9 5	512 1891 512 -555 187104 565 -1274 474 -2814 984 781 923 1714	21 22 23 1 1 5 2 3	250124 213- 380 152- 151 1532 -1497 31018 2210 2104	20 22 24 0 2 1 1 2 3	347- 1701 1188 -1 1212 -1 1453 -1 666	220 13 552 14 304 15 310 16 639 17 700 18 340 19	1688 365- 590 823 1584 703 1013	1671 216 777 769 -1801 -827 983	5 7 9 11 13 15 17	1279 1128 1238 354- 393- 850 433-	-1436 -1175 1194 -111 -270 937 -311
17 18 19 20 21 22 23	1277 1227 2016 1966 550 -545 50660 485239 1404 -1592 1003 1200	10 20 11 2 12 2 13 3 14 22 15 7 16 19 17 4	267 - 200 285 - 45 302 - 113 278 -2021 772 658 394 1796	4 5 6 7 8 9 10	314-235 1010-998 446 494 560 -689 415 -442 1659 1752 348-35	4 5 6 7 8 9 10	1170 869 469 1608 -1 234- 252- 270-	855 20 604 21 184 22 416 0 2 4 -10 1 241 2 305 3	275 617 571 5 1026 455 878 599	135 622 . 550 -875 -440 622 -375	19 21 23 1 3 1 2 3 4	488 862 282- 786 1564 678 1497	572 936 47 695 2508 546 1943
24 25 004 1 2 3 4	1066 1115 232453 1329 1224 2111 -2066 1172 -1151 402- 32 665 -579	18 3 19 3 20 14 21 3 22 11 23 2 24 2	352- 91 348343 439 -1567 322- 477 150 1042 2711 234- 267	12 13 14 15 16 17 18	352 - 263 874 -1001 34850 1273 1513 327 - 329 310287 28991	12 13 14 15 16 17	1261	924 4 864 5 -98 7 651 8 459 9 795 10	334- 338- 1733 347- 351- 356- 752	346 343 -1560 178 131 127 858	5 6 7 8 9 10 11	465 354 377 1306 659 1664 810	-168 101 -208 1244 -609 -1627 724
5 6 7 8 9 10 11	2733 2982 1741 1765 2575 -2750 717 -670 1615 -1506 907 -832 2375 2558	25 1 1,1 2 6 2 2 3 1 4 11 5 8 6 10	17833 588 641 213 309 18313 189 854 307 -529 501 -656	19 20 21 1 1 6 2 3 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19 20 21 22 23 24 0 2 2	356	349 12 358 13 259 14 -92 15 859 16 354 17 434 18	361- 361- 351- 342- 329 306-	-540 -12 396 -225 474 -18 -869	12 13 14 15 16 17 18	845 1322 563 640 429- 424-	-90 607 1310 500 -763 -51 -261
12 13 14 15 16 17 18	1077 1046 1847 -1969 538334 538338 802 -740 2121 2348 1066 1128	7 5 8 7 9 6 10 2 11 2 12 3 13 4	77 496 768 -565 12 -539 271- -161 285- 248 102- -279 193 585	5 6 7 8 9 10 11	415 276 35297 352- 132 352282 352- 15 352- 183 348180	1 2 3 4 5 6 7	1764 20 1374 12 194 2101 20 2070 -18 2638 -30 2205 17	018 19 210 20 -74 21 042 0 2 6 334 1 095 2 730 3	252- 217- 158- 562 2391 361- 361-	42 52 129 421 2428 -15 123	20 21 22 23 24 1 3 2 2	1037 357- 946 270- 198- 758 512	991 -342 -928 290 -257 -990 430
19 20 21 22 23 0 0 6 1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	14 3 15 5 16 3 17 3 18 3 19 3 20 3	327- 87 569 -571 148- 375 152- 79 152- 118 143125 131465	12 13 14 15 16 17 18	33924 331232 318144 302 - 18 280 - 101 255 - 261 225 - 89	8 9 10 11 12 13 14	1116 8 527 4 2341 20 1647 -13 2809 -26 1436 9 707 5	337 4 419 5 045 6 339 7 523 8 983 9 549 10	361- 2314 361- 1967 361- 634 356-	-188 -2392 227 2022 -107 452 -147	3 4 5 6 7 8 9	949 893 374 690 838 901 1159	996 -887 -336 585 -783 862 1094
2 3 4 5 6 7 8	517	21 3 22 2 23 2 24 2 1 1 3 15 2 17 3 17	114286 18595 155- 266 113- 168 107 -1587 105 -2039 182 2042	19 1 1 7 2 3 4 5 6	187- 244 403 -426 612 734 1261 1298 556 -496 763 -820 343- 132	15 16 17 18 19 20 21	356- 4 1778 16 1256 -12 1705 -17 482 6 334- 2 562 5	11 548 12 241 13 706 14 532 15 285 16 542 17	1909 342- 1387 314- 716 270- 1661	-2075 289 1401 -59 674 -163 -1756	10 11 12 13 14 15 16	393 472 417 870 424 838	-308 -451 228 -682 459 1003
9 10 11 12 13 14 15	750 -652 675 697 2228 2426 517- 77 1668 -1615 485- 308 982 -757	4 12 5 12 6 2 7 12 8 10 9 16 10 16	114 1098 177 -1141 150- -41 161 -1140 169 -918 197 1593 100 1400	7 8 9 10 11 12 13	828 -894 424 583 1395 1398 624 -597 518 -498 289- 87 666 -600	22 23 24 0 2 3 1 2 3	1157 11 851 -8 847 -11 1594 -16 1238 -11 234- 1 1179 9	18 18 195 19 115 0 2 168 1 121 2 195 3 101 4	207- 648 851 356- 356- 356- 712	74 924 -801 122 48 -77 627	17 18 19 20 21 22 23	429- 417- 397- 766 735 298- 242-	-205 -133 -290 636 724 -221 -260
16 17 18 19 0 0 8 1 2	432- 27 1731 1885 '422 -422 1056 -1083 1921 -1851 1783 -1806 634 604	11 5 12 3 13 7 14 12 15 12 16 5 17 3	39 -556 22- 43 76 -704 98 -1337 269 1311 309 594 152- -336	14 15 16 17 1 1 8 2 3	696 693 1197 1264 446 -402 577 -648 310- -33 306- -167 581 228	4 5 6 7 8 9	909 6 1472 11 1486 -12 1557 -12 288 675 -4 1004 7	774 5 1999 6 558 7 558 8 -11 9 -29 10 -69 11	351- 347- 338- 334- 324- 310- 302-	-237 -408 397 363 279 496 -172	-3 133 2 3 4 5 6 7	461 540 1033 1417 544 337- 719	-200 522 680 -1285 -1688 621 225 703
3 4 5 5 7	538 -455 770 800 1731 1714 1162 -1277 1077 -1131	18 3 19 3 20 7 21 10 22 8	43- 134 31569 21 -681 977 1149 83 855	4 5 6 7 8	302- 511 297353 289- 9 280143 267290	11 12 13 14 15	324- 582 -5 347- 356- 1 361- 1	81 12 87 13 3 14 90 15 90 16	1261 265- 238- 211- 464	-1214 267 159 -4 641	8 9 10 11 12	1370 1287 524 758 417-	1246 -1405 -483 666 7

Table 4 (cont.)

h k l	10 F	10 P _o	hkl	10 P.	10 F _c	hkl	10 F	10 F _c	hkl	10 P	10 F _c	hkl	10 F	10 F _c	hkl	10 F 0	10 P _o
13 3 3	853	728	12 3 5	424-	140	238	659	553	22 4 1	271	-288	1843	938	837	17 4 5	306	-316
14	580	432	13	548	606	3	496	-542	042	1508	2308	19	280-	565	18	880	959
15	1152	-1262	14	405-	218	4	845	-715	1	991	-1103	20	245-	-156	046	459	-460
16	898	-905	15	1250	-1355	5	603	477	2	903	-945	21	202-	183	1	1543	-1605
17	612	558	16	365-	91	6	302-	-98	3	358	264	044	1274	1350	2	356-	110
18	397-	-218	17	901	770	7	286-	256	.4	1596	-1281	1	1876	-2238	3	352-	-50
19	731	647	18	302-	-89	8	591	583	5	1888	1770	2	341	-263	4	352-	222
20	1136	1025	19	858	822	9	429	-451	6	1883	1759	3	414	-441	5	1600	1672
21	965	-912	20	194-	33	10	436	-372	7	1339	-993	4	976	-796	6	349-	140
22	254-	-312	136	429-	396	240	1056	-1505	- 8	1106	-840	5	1856	1882	7	1442	-1419
134	354-	-192	2	1068	1003	4	1271	-1312	9	934	-738	6	884	-812	8	345	409
2	961	1021	3	433-	ō	6	1971	2858	10	1390	-1183	7	1240	-1277	9	329-	-307
3	457	448	4	853	-928	8	739	-618	11	1199	1060	8	348-	-213	10	318-	-174
4	365-	-427	5	429-	-183	10	1933	-1953	12	2162	2008	9	352-	92	11	1741	1570
5	374-	-112	6	429-	4	12	2212	1977	13	387	-327	10	624	-635	12	742	-456
6	381-	22	7	429-	161	14	926	-664	14	356-	-264	11	1618	1798	13	1117	-1044
7	393-	-84	8	829	873	16	1413	-1229	15	356-	2	12	995	882	14	248-	-68
8	898	998	9	417-	-125	18	2273	2111	16	1305	-1214	13	1095	-1046	15	573	-472
9	616	516	10	603	-676	20	299-	5	17	1019	952	14	345-	55	16	180-	194
10	965	-922	11	401-	88	22	1355	-1192	18	1153	1158	15	746	-732	047	1362	1359
11	500	-388	12	386-	-43	041	378	491	19	758	-597	16	573	-607	1	544	-555
12	429-	58	13	370-	188	1	1286	1707	20	275-	-133	17	1297	1154	2	792	-738
13	433-	-388	14	833	711	2	165-	-236	21	593	-490	18	486	384	3	313-	-72
14	949	1215	15	321-	-205	3	359	311	22	773	-809	19	559	-492	4	696	-772
15	505	469	16	508	-538	4	433	-280	043	1527	2047	20	188-	-158	5	452	423
16	481	-633	17	246-	-80	5	1650	-2052	1	1286	1388	045	1914	2307	6	1608	1515
17	389-	-124	137	1087	859	6	938	861	5	631	-725	1	348-	81	7	590	-495
18	361-	-59	2	465	-429	7	1646	1809	3	371	333	2	926	-877	8	505	-437
19	330-	-248	3	1326	-1129	8	271-	-17	4	773	-800	3	352-	30	9	264-	-70
20	481	579	Ă	747	604	9	1041	833	5	1244	-1219	4	945	-996	10	1033	-901
21	242-	294	5	401-	212	10	631	-532	6	1642	1675	5	489	-450	11	551	393
135	556	453	. 6	393-	96	11	2040	-1920	7	1125	1011	6	1557	1758	12	1045	1126
2	405-	324	7	700	507	12	424	385	ġ	525	-551	7	356-	140	13	375	-381
3	1358	-1494	ġ	814	-641	13	1608	1509	ģ	332-	143	8	826	-749	048	797	-797
Ă	412-	-24	ğ	1155	-1111	14	352-	-280	10	800	-844	9	356-	245	1	968	-907
5	961	901	10	484	395	15	359	441	11	1171	-1310	10	797	-907	2	616	525
é	121-	262	11	700	611	16	356-	-294	12	1049	1157	11	345-	-434	3	230-	140
7	1056	1173	12	306-	81	17	1535	-1550	13	965	923	12	1321	1465	4	559	557
Ŕ	420-	-151	13	817	773	18	452	473	14	356-	-304	13	325-	208	5	1106	1061
ă	1201	-1515	14	242-	-401	19	1194	987	15	513	484	14	310-	-248	6	1052	-1027
10	433-	-336	15	810	-072	20	294-	-53	16	815	-888	15	291-	-52	7	872	-1056
11	420	-550	1 2 8	222	202	21	486	400	17	835	_904	16	1156	-1062	•		
11	429-	201		∸دد د	202		-00	403	• •	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-304						

which are listed in Table 3. This omission is responsible for difference observed for the peak heights of the two sulphur atoms, which can be accounted for by residual effects of Ba on S_I , these atoms being nearly one above the other along [010].

The F_c structure factors reported in Table 4 are calculated with the coordinates and thermal parameters of Tables 1 and 2. The corresponding R (observed reflections only) and R' values (including $F_o = \frac{1}{2}F_{\min}$, when $F_c \geq F_{\min}$, for unobserved reflections) are

\boldsymbol{k}	R(hkl)	R'(hkl)
0	0.087	0.090
1	0.127	0.170
2	0.161	0.184
3	0.141	0.155
4	0.119	0.126
Overall	0.128	0.144

The R value for the equatorial layer is considerably better than the others because the h0l intensities have been measured on integrated photographs.

Discussion

The projections on (010) and (001) shown diagrammatically in Fig. 3 give a general view of the structure. The distances and angles in the pyramidal (C_{3v}) thiosulphate group agree fairly well with those found in the other thiosulphates of known structure (Table 5).

The standard deviations are calculated from the formulae of Ahmed & Cruickshank (1953) for bond lengths and of Darlow (1960) for angles, taking into account the effect of symmetry where necessary.

Each barium atom coordinates nine oxygen and two sulphur atoms at the following distances. (When the coordinates are not indicated the atom is at x, y, z)

Table 5. Distances and angles in $S_2O_3^{2-}$ group

S _I -S _{II} S _I -O _I S _I -O _{II} S _I -O _{III}	$\begin{array}{c} BaS_2O_3.H_2O\\ 1\cdot961\pm0\cdot010\ \text{\AA}\\ 1\cdot568\pm0\cdot041\\ 1\cdot519\pm0\cdot032\\ 1\cdot439\pm0\cdot032 \end{array}$	Na ₂ S ₂ O ₃ , 5H ₂ O 1·97 Å 1·59 1·46 1·40	$\left.\begin{array}{c} Na_2S_2O_3\\ 2\cdot01\pm0\cdot02\ \text{\AA}\\ 1\cdot52\pm0\cdot03\\ 1\cdot46\pm0\cdot03\\ 1\cdot42\pm0\cdot03\end{array}\right\}$	$\begin{array}{c} Mg(OH_2)_6S_2O_3\\ 2\cdot020\pm0\cdot008\ \text{\AA}\\ 1\cdot484\pm0\cdot014\\ 1\cdot479\pm0\cdot040 \end{array}$
OI-SI-OII OI-SI-OIII OII-SI-OIII SII-SI-OI SII-SI-OI SII-SI-OII SII-SI-OII	$\begin{array}{c} 105{\cdot}3\pm2{\cdot}3^{\circ}\\ 104{\cdot}3\pm1{\cdot}9\\ 116{\cdot}3\pm1{\cdot}4\\ 109{\cdot}7\pm1{\cdot}3\\ 112{\cdot}0\pm0{\cdot}8\\ 108{\cdot}7\pm1{\cdot}3 \end{array}$	104–115°	$\begin{array}{c c}109\cdot4\pm3\cdot6^{\circ}\\107\cdot9\pm3\cdot6\\114\cdot4\pm3\cdot6\\108\cdot3\pm2\cdot4\\109\cdot3\pm2\cdot4\\107\cdot6\pm2\cdot4\end{array}\right\}$	$110.9 \pm 1.1^{\circ} \\ 111.0 \pm 1.1 \\ 107.6 \pm 0.8 \\ 108.5 \pm 0.$

Ba-S ₁₁	3.362 ± 0.013 Å
Ba-O _{III}	$2{\cdot}780 \pm 0{\cdot}037$
Ba-O ₁ $(x, y-1, z)$	$3{\cdot}000\pm0{\cdot}055$
Ba-O ₁₁ $(x, y-1, z)$	$2\boldsymbol{\cdot}792 \pm 0\boldsymbol{\cdot}039$
Ba–S _{II} $(x, 1-y, z-\frac{1}{2})$	$3{\cdot}440 \pm 0{\cdot}008$
Ba–O ₁ $(x, 1-y, z-\frac{1}{2})$	$2{\cdot}829 \pm 0{\cdot}030$
Ba-O ₁₁ $(x, 1-y, \frac{1}{2}+z)$	$2{\boldsymbol{\cdot}}775 \pm 0{\boldsymbol{\cdot}}020$
Ba–O _{III} $(x, 1-y, \frac{1}{2}+z)$	$3{\cdot}553 \pm 0{\cdot}025$
Ba-O ₁ $(\frac{1}{2} - x, y - \frac{1}{2}, z)$	$2\boldsymbol{\cdot}997 \pm 0\boldsymbol{\cdot}036$
Ba-O _{III} $(\frac{1}{2} - x, y - \frac{1}{2}, z)$	$2{\boldsymbol{\cdot}}900 \pm 0{\boldsymbol{\cdot}}023$
Ba-H ₂ O	$2{\cdot}827 \pm 0{\cdot}023$

The two Ba–S distances are nearly of the same magnitude and remarkably longer than the corresponding distance in BaS of $3\cdot19$ Å (Goldschmidt, 1927); they lie in the range ($3\cdot18_0-3\cdot52_8$ Å) of Ba–S distances found in barium tetrasulphide monohydrate (Abrahams, 1954). The values of Ba–O distances are in agreement with those found in the coordination of oxygen by barium, as shown in Table 6.

Table 6. Ba-O distances

Compound	Distances (Å)	Source
BaO	2.772	Goldschmidt, 1927
BaFeSi ₄ O ₁₀ (Gillespite)	2.73; 2.98	Pabst, 1943
$Ba_{2}(PO_{4})_{2}$	2.71 - 3.23	Zachariasen, 1948
Ba(HCÕÕ)2	2.67 - 3.70	Sugawara, Kakudo, Saito & Nitta, 1951
BaAl ₂ Si ₂ O ₈ (High temperature modification of Barium Felspar)	3.02	Yoshiki & Matsumoto, 1951
BaO ₂	2.68; 2.79	Abrahams & Kalnajs, 1954
BaS, H,O	2.787; 2.796	Abrahams, 1954
BaTiO,	2.78 - 2.96	Vousden, 1956
BaBOF ₃	2.86	Chackraburtty, 1957
Cəlsian (Barium Fəlspar)	2.667-3.421	Newnham & Megaw, 1960
BaZnO ₂	2.64 - 3.36	v. Schnering, Hoppe & Zemann, 1960
Ba(ClO ₄), 3H ₂ O	2.82 - 3.00	Mani & Ramaseshan, 1960
BaS_2O_3 . H_2O	2.78 - 3.55	Present study

The environment of Ba²⁺ is illustrated by the stereographic and clinographic projections shown in Fig. 4 and 5 respectively. This environment corresponds to an octahedral arrangement of five $S_2O_3^{2-}$ groups and one H₂O molecule around each Ba²⁺, three O–O and two O–S edges of $S_2O_3^{2-}$'s being directed towards Ba²⁺. Conversely five of the six edges of each $S_2O_3^{2-}$ are orientated towards five Ba²⁺, the sixth edge (O_{II}-S_{II}) towards a H₂O molecule.

The coordination polyhedra are linked together in such a way that the structure as a whole can be described as constituted from slabs of two kinds: one formed by two layers of Ba^{2+} and $S_2O_3^{2-}$, the other by a layer of H₂O. These slabs succeed one another along the [100] axis. Within each slab the Ba^{2+} and $S_2O_3^{2-}$ ions have an arrangement of NaCl type.

Fig. 4. Stereographic projection of the environment of Ba²⁺.

Fig. 5. Clinographic projection of the environment of Ba²⁺.

The presence of the heavy atoms does not allow the direct location of H atoms. Nevertheless it is possible to get some information about their distribution by considering the bond interactions involving water molecules. Assuming for these a tetrahedral configuration with a lone pair pointing towards Ba^{2+} , the most probable orientation of the H's and of the other lone pair should be that represented in Fig. 6 on the basis of Donohue's (1952) angular criterion.

Each water molecule can form hydrogen bonds with two others related one by a symmetry centre and one by a 2-fold axis (Fig. 3) so that there would be two H atoms, generated by these symmetry elements,

Fig. 6. Stereographic projection of the environment of a H_2O molecule viewed down the Ba-OH₂ bond.

between each H_2O couple. Steric hindrance between these two H atoms, especially in the case of 2-fold axis, indicates that a statistical distribution of H's among the three directions favoured for hydrogen bonding is probable. This kind of disordering is similar, in some aspects, to that observed in ice (Pauling, 1935; Peterson & Levy, 1957; Honjo & Shimaoka, 1957) and involves the possibility of hydrogen bonding with sulphur.

Fig. 7 shows a layer of H_2O molecules and their tetrahedral coordination. The tetrahedra are linked together in chains running along [001]. The hydrogen bonding distances are:

$ m H_2O-H_2O\left(ar{x},ar{y},ar{z} ight)$	2.713 ± 0.094 Å
$\mathrm{H}_{2}\mathrm{O}-\mathrm{H}_{2}\mathrm{O}\left(\bar{x},y,\frac{1}{2}-z\right)$	$2{\cdot}766 \pm 0{\cdot}059$
H ₂ O-S ₁₁ $(\bar{x}, 1-y, \bar{z})$	$3{\cdot}300\pm0{\cdot}037$

The packing distances shorter than 4 Å are:

	•
$O_{I} - O_{II} (x, 2 - y, \frac{1}{2} + z)$	2·983 <u>+</u> 0·057 Å
$O_{I} - O_{III} \left(\frac{1}{2} - x, \frac{1}{2} + y, z\right)$	$3{\cdot}015 \pm 0{\cdot}052$
$O_{I} - O_{III} \left(\frac{1}{2} - x, \frac{3}{2} - y, \frac{1}{2} + z\right)$	$2{\cdot}961 \pm 0{\cdot}039$
$O_{I} - O_{III} (x, 1-y, \frac{1}{2}+z)$	$3{\cdot}748 \pm 0{\cdot}061$
$O_{11}-H_2O(x, 1+y, z)$	$\textbf{3.268} \pm \textbf{0.050}$
$O_{11}-H_2O(x, 1-y, z-\frac{1}{2})$	$3\boldsymbol{\cdot}260 \pm 0\boldsymbol{\cdot}033$
H_2O-O_{II} ($\bar{x}, 1-y, \bar{z}$)	$\textbf{3.227} \pm \textbf{0.029}$
H_2O-S_{II}	$3{\cdot}528 \pm 0{\cdot}053$
H ₂ O–S ₁₁ $(x, 1-y, z-\frac{1}{2})$	$3{\cdot}633 \pm 0{\cdot}038$
$S_{II} - O_{III} (x, 1-y, \frac{1}{2}+z)$	$3\boldsymbol{\cdot}562 \pm 0\boldsymbol{\cdot}025$
$S_{II} - S_{II}$ ($\bar{x}, y, \frac{1}{2} - z$)	$\textbf{3.563} \pm \textbf{0.013}$

Fig. 7. A layer of H₂O molecules, showing two chains of water coordination tetrahedra.

The calculations were performed on the computer of the Centro Calcoli e Servomeccanismi della Università di Bologna with financial support from Consiglio Nazionale delle Ricerche. The programmes were obtained through the courtesy of Dr L. H. Jensen and Prof. G. A. Jeffrey. It is a pleasure to thank all these people and Prof. L. Cavalca for his valuable interest.

References

- ABRAHAMS, S. C. (1954). Acta Cryst. 7, 423.
- Abrahams, S. C. & Kalnajs, J. (1954). Acta Cryst. 7, 838.
- AHMED, F. R. & CRUICKSHANK, D. W. J. (1953). Acta Cryst. 6, 385.
- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOP-STRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A.L. (1955). Acta Cryst. 8, 478.
- BROWN, B. W., LINGAFELTER, F. C., STEWART, J. M. & JENSEN, L. H. (1959). Acta Cryst. 12, 350.
- CAVALCA, L., NARDELLI, M. & BRAIBANTI, A. (1956). Ric. Sci. 26, 1881.
- CHACKRABURTTY, D. M. (1957). Acta Cryst. 10, 199.
- CLARKE, F. W. (1877). Amer. J. Sci. [3], 14, 283.
- CRUICKSHANK, D. W. J. (1949). Acta Cryst. 2, 65.
- DARLOW, S. F. (1960). Acta Cryst. 13, 683.
- DAWSON, B. (1960). Acta Cryst. 13, 403.
- DONOHUE, J. (1952). J. Phys. Chem. 56, 502.
- GOLDSCHMIDT, V. M. (1927). Geochemische Verteilungsgesetze der Elemente VIII. Oslo: Dybwad.

- mputer Нопло, G. & Sнімаока, K. (1957). Acta Cryst. 10, 710.
 - MANI, N. V. & RAMASESHAN, S. (1960). Z. Kristallogr. 114, 200.
 - NARDELLI, M., FAVA, G. & GIRALDI, G. (1962). Acta Cryst. 15, 227.
 - NEWNHAM, R. E. & MEGAW, H. D. (1960). Acta Cryst. 13, 303.
 - PABST, A. (1943). Amer. Min. 28, 372.
 - PAULING, L. (1935). J. Amer. Chem. Soc. 57, 2680.
 - PETERSON, S. W. & LEVY, H. A. (1957). Acta Cryst. 10, 70.
 - PHILLIPS, D. C. (1956). Acta Cryst. 9, 819.
 - Sándor, E. & Csordás, L. (1961). Acta Cryst. 14, 237. Schnering, H. G. von, Hoppe, R. & Zemann, J. (1960).
 - Z. anorg. Chem. 305, 241. SHIONO, R. (1957). Technical Report No. 2, University
 - of Pittsburg, Computation and Data Processing Center. SHIONO, R. (1959). *Technical Report* No. 9, University
 - of Pittsburg, Computation and Data Processing Center.
 - SUGAWARA, T., KAKUDO, M., SAITO, Y. & NITTA, I. (1951). X-Rays (Osaka University), 6, 85.
 - TAYLOR, P. G. & BEEVERS, C. A. (1952). Acta Cryst. 5, 341.
 - THOMAS, L. H. & UMEDA, K. (1957). J. Chem. Phys. 26, 293.
 - VOUSDEN, P. (1956). Acta Cryst. 9, 141.
 - WIEBENGA, E. H. & SMITS, D. W. (1950). Acta Cryst. 3, 265.
 - YOSHIKI, B. & MATSUMOTO, K. (1951). J. Amer. Ceram. Soc. 34, 283.
 - ZACHARIASEN, W. H. (1948). Acta Cryst. 1, 263.

Acta Cryst. (1962). 15, 484

The Structure of Salamander Alkaloids. I. On the Structure of Samandarine-Hydrobromide

BY G. WEITZ AND E. WÖLFEL

Eduard-Zintl-Institut, Technische Hochschule Darmstadt, Darmstadt, Germany

(Received 19 May 1961)

Samandarine $C_{19}H_{31}O_2N$ and the related compounds are the only genuine alkaloids so far known in animals. X-ray analysis shows that the sterol skeleton of samandarine is related to 5β -androstane. The oxazolidine ring as deduced by chemical methods has been confirmed.

The X-ray analysis has been mainly carried out on the hydrobromide with space group $P2_1$,

$$a = 12.98, b = 6.28, c = 12.43$$
 Å; $\beta = 95^{\circ}$.

There are 2 molecules and 2 methanols in the unit cell. The heavy atom was found from Patterson projections. The heavy-atom technique was used to derive signs, and several 2-dimensional syntheses were calculated until the R_1 -factor for the hol reflections reached 0.28. A 3-dimensional model of the molecule has been found and two 3-dimensional Fourier-syntheses were calculated. The R_1 -factor reached 0.25 including unobserved reflections. The least-squares refinement was calculated using the program of Levy & Busing for the IBM 704. For the 3-dimensional intensities the final R_1 -factor reached $R_1 = 0.17$ including unobserved reflections.

Introduction

The miliary glands of the salamander species 'Salamandra maculosa' and 'Salamandra atra Laur' contain a secretion which has been studied by C. Schöpf and his co-workers. The main part of this secretion consists of proteins and water and only a small fraction of about 10% is a mixture of various alkaloids. Samand-